SSA-UO: Unsupervised Sentiment Analysis in Twitter
نویسندگان
چکیده
This paper describes the specifications and results of SSA-UO, unsupervised system, presented in SemEval 2013 for Sentiment Analysis in Twitter (Task 2) (Wilson et al., 2013). The proposal system includes three phases: data preprocessing, contextual word polarity detection and message classification. The preprocessing phase comprises treatment of emoticon, slang terms, lemmatization and POS-tagging. Word polarity detection is carried out taking into account the sentiment associated with the context in which it appears. For this, we use a new contextual sentiment classification method based on coarse-grained word sense disambiguation, using WordNet (Miller, 1995) and a coarse-grained sense inventory (sentiment inventory) built up from SentiWordNet (Baccianella et al., 2010). Finally, the overall sentiment is determined using a rule-based classifier. As it may be observed, the results obtained for Twitter and SMS sentiment classification are good considering that our proposal is unsupervised.
منابع مشابه
Subjectivity and Sentiment Analysis of Modern Standard Arabic and Arabic Microblogs
Though much research has been conducted on Subjectivity and Sentiment Analysis (SSA) during the last decade, little work has focused on Arabic. In this work, we focus on SSA for both Modern Standard Arabic (MSA) news articles and dialectal Arabic microblogs from Twitter. We showcase some of the challenges associated with SSA on microblogs. We adopted a random graph walk approach to extend the A...
متن کاملEvaluating Distant Supervision for Subjectivity and Sentiment Analysis on Arabic Twitter Feeds
Supervised machine learning methods for automatic subjectivity and sentiment analysis (SSA) are problematic when applied to social media, such as Twitter, since they do not generalise well to unseen topics. A possible remedy of this problem is to apply distant supervision (DS) approaches, which learn from large amounts of automatically annotated data. This research empirically evaluates the per...
متن کاملText Analytics of Customers on Twitter: Brand Sentiments in Customer Support
Brand community interactions and online customer support have become major platforms of brand sentiment strengthening and loyalty creation. Rapid brand responses to each customer request though inbound tweets in twitter and taking proper actions to cover the needs of customers are the key elements of positive brand sentiment creation and product or service initiative management in the realm of ...
متن کاملA High-Performance Model based on Ensembles for Twitter Sentiment Classification
Background and Objectives: Twitter Sentiment Classification is one of the most popular fields in information retrieval and text mining. Millions of people of the world intensity use social networks like Twitter. It supports users to publish tweets to tell what they are thinking about topics. There are numerous web sites built on the Internet presenting Twitter. The user can enter a sentiment ta...
متن کاملINESC-ID: A Regression Model for Large Scale Twitter Sentiment Lexicon Induction
We present the approach followed by INESCID in the SemEval 2015 Twitter Sentiment Analysis challenge, subtask E. The goal was to determine the strength of the association of Twitter terms with positive sentiment. Using two labeled lexicons, we trained a regression model to predict the sentiment polarity and intensity of words and phrases. Terms were represented as word embeddings induced in an ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013